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Ultrasonic spectroscopy is used to characterize a model aerated food system consisting of agar gel

in which both bubbles and polystyrene beads are embedded. By exploiting the distinct frequency

dependence of each inclusion’s acoustic resonances, it is demonstrated that the sizes of the bubbles

and beads can be measured by ultrasound even when the size distributions are so similar that these

inclusions are difficult to distinguish in optical images. While these results demonstrate the

potential for applying ultrasonic spectroscopy to evaluate any soft heterogeneous material in

which both bubbles and solid inclusions are present, the technique is especially relevant for

functional foods, in which solid functional ingredients must be incorporated without degrading

the aerated structure of the food and causing unacceptable quality impairment.

Introduction

Most processed foods are complex, multi-structured, hetero-

geneous, soft materials,1,2 and the quality of these foods is

strongly dependent on correctly manipulating their structure

during processing.3,4 The nutritional quality of food materials

is also affected by the structural organization of molecules,5

with (in some instances) markedly different bioavailability

depending on the physico-chemical environment in which the

molecules are situated.6 In recent years, concerns about diet-

related disease have driven the growth of a functional foods

industry.2,7 Since functional foods produce physiological

health-promoting effects that cannot be gleaned from a

proximate analysis of their macro- and micro-nutrients,7,8

then microstructure manipulation during processing is key to

the successful formulation of effective functional foods.

One means of creating functional foods is to bolster the

nutritional efficacy of a conventional food by adding specific

components.7–9 However, adding these components can impair

the original quality of the food, an outcome particularly

evident in aerated foods such as bread, cakes, ice cream and

other processed desserts.10–13 For instance, in breadmaking,

adding components such as bran can physically disrupt the

thin film that surrounds growing gas bubbles in the dough,

thus limiting retention of the carbon dioxide that is critical to

good structure and volume in the loaf.10 Given the weak

mechanical properties of foams14,15 and other aerated

systems,16 coupled with their propensity for dynamic changes

in structure,15–18 any interactions between added components

and the original aerated structure are expected to disrupt the

final structure, and hence reduce consumer acceptability, of

these soft materials.

To preserve better the original quality while maximizing the

nutritional benefits, it is necessary to control interactions

between added components and the dynamically-evolving

distributions of bubbles during the various food process

operations19 that will create the functional food. Therefore,

techniques are needed that will simultaneously determine the

concentration and sizes of both bubbles and inclusions and

preferably monitor interactions between them in real time.

Given the opacity of most food materials, techniques that are

non-destructive and applicable to optically opaque materials

are especially desirable. A technique with the potential to

address most of these desiderata is ultrasonic spectroscopy.

Ultrasonic spectroscopy is a technique in which low-

intensity ultrasonic pulses are propagated into a material,

and their frequency dependence is used to interrogate the

material’s mechanical behaviour.20–22 The phase velocity and

attenuation coefficient can be measured as a function of

frequency using Fourier analysis to provide information on the

mechanical properties and structure of the material through

which the pulse has travelled (e.g. see ref. 23). Both the phase

velocity and the attenuation coefficient can be markedly

affected by structural heterogeneities where a difference in the

acoustic impedance exists. For example, the large density and

velocity difference between gases and condensed matter

dictates a large acoustic impedance mismatch, leading to

dramatic resonance effects that substantially modify the pro-

pagation of sound over a range of frequencies.24 Therefore,

ultrasonic spectroscopy appears suitable for investigations of

the disruption of the aerated structure of soft materials to

which nutrient inclusions are added.

The aim of this paper is to show that ultrasonic spectroscopy

can resolve different types of inclusions in soft materials—

specifically bubbles and relatively ‘‘hard’’ inclusions of

comparable size. In this way, we show for a model aerated

food system that ultrasonic spectroscopy is a promising

technology for the functional foods industry because of its

potential to identify interactions between ‘‘nutrient inclusions’’

and bubbles.
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Materials and methods

Experiments were performed on three systems made from a

matrix material of agar gel containing (1) bubbles, (2)

polystyrene (PS) beads, and (3) bubbles and PS beads together,

so that the underlying physics relating mean size, concentra-

tion and size distribution to ultrasonic data could be critically

examined. Agar is a transparent gel, allowing independent

measurements of the sizes and concentrations of the inclusions

to be made by optical imaging techniques. Agar gel’s acoustic

properties are very close to those of water and do not show any

unusual features as a function of frequency.

Agar gels of 2% concentration were prepared by dissolving

granulated agar in distilled water and heating. The PS beads

had a mean diameter of 250 mm (size range 149–350 mm) and

were purchased from Bangs Laboratories, Inc. (Fishers, IN,

USA). The PS beads were added to the gel at about 60 uC.

Bubbles were entrained in the gel (or gel with PS beads) when

the liquid sol was injected into the sample cell at high speed

with a syringe, and the bubbles were then entrapped as the sol

gelled. The samples were stirred continuously with a magnetic

stirrer in order to obtain uniform distributions of the beads

and/or bubbles in the gel until the gel temperature was lowered

below approximately 55 uC and the gel was sufficiently viscous

to trap the inclusions in place. After gelling of the agar

dispersion, 15-mm-thick slabs were cut with a trimming blade.

Pictures of both surfaces were taken before and after the

experiments in order to measure the concentration and size

distribution of the inclusions. The bubble and PS beads size

distributions were determined from the pictures using the

ImageJ software package (http://rsb.info.nih.gov/ij/, National

Institutes of Health, Bethesda, MD, USA).

The ultrasonic experiments were carried out in a water tank

at room temperature, by placing the samples in the path

between a generating and a detecting transducer. Transducers

with central frequencies of 40, 100, 250, 500 kHz, 1, 2.25 or

5 MHz were used. An arbitrary waveform generator (Agilent

33220A) and broadband power amplifier (Amplifier Research

Model 250L) were used to generate and amplify the input

signal that was applied to the generating transducer. Reference

(water-path-only) and through-sample signals were detected by

either a second transducer or a hydrophone, amplified and

recorded on a digital oscilloscope (Tektronix TDS544A). The

reference signal was measured so that the incident waveform

could be determined, the latter being obtained from the reference

pulse by shifting its arrival time by the time taken to travel in

water through a distance equal to the sample thickness.

The attenuation coefficient, a, and phase velocity, v, were

determined by comparing the magnitudes and phases of the

fast Fourier transforms of the transmitted sample signal

relative to the incident wave pulse:

a = 22[In(AS/AI)]/L (1)

v = vL/(wS 2 wI) (2)

Here v, A, w and L are the angular frequency, Fourier

magnitude, cumulative phase and the sample thickness,

respectively, and the subscripts S and I represent the

through-sample and incident waveforms, respectively. Since

the acoustic impedance of the sample differs from that of the

surrounding medium, it was also necessary to correct for the

reduction in the magnitude and possible phase shift of the

transmitted pulse when crossing the sample interfaces.24

Results and discussion

(a) Gel with bubbles

It is known that the presence of bubbles in a liquid dramati-

cally modifies the propagation of sound.25,26 In particular, the

velocity and attenuation as a function of frequency exhibit

peaks whose shape and position are related to the radius

distribution of the bubbles. Sound propagation in bubbly

media of uniformly sized bubbles with radius R0 can be

described in terms of the frequency dependence of the complex

wave vector k as

k2~k2
Mz4pN

R0 v2

v2
0{v2{ivC

(3)

where kM = v/vM and vM are the wave vector and velocity in

the matrix, N is the number of bubbles per unit volume, and C

is the damping factor, which includes radiating, viscous and

thermal loss mechanisms. The resonance frequency v0 is

known as the Minnaert angular frequency and is given by

v0&
1

R0

ffiffiffiffiffiffiffiffiffiffi

3cP0

r

s

(4)

where c is the ratio of the heat capacities of the gas in the

bubble, P0 is the static pressure of the gas, and r the mass

density of the matrix.

In the case of viscoelastic media, the complex frequency-

dependent shear modulus shifts the Minnaert frequency to a

higher value and leads to additional attenuation. By account-

ing for this effect, a good approximation for v0 is27

v0&
1

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3cP0z4m0

r

s

(5)

where m9 is the real part of the matrix shear modulus.

Eqn (3) is written for the case when all the bubbles are the

same size. Its extension to the case when there is a distribution

of different bubble sizes is

k2~k2
Mz4p

ð

N Rð Þf R,vð ÞdR

~k2
Mz4p

ð

N Rð Þ Rv2dR

v2
0{v2{ivC

,

(6)

where N(R)dR is the number of bubbles with radius between R

and R + dR per unit volume, and f(R,v), given by the second

term on the right hand side of eqn (3), is the scattering function

of a bubble with radius R at frequency v/2p. The phase velocity

and the attenuation are then determined from eqn (6) as

v = v/Re(k) (7)

a = 2=m(k) (8)
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The frequency dependence of the phase velocity and

attenuation near resonance not only depends on the concen-

tration and the size distribution of the bubbles incorporated in

the medium, but is also affected by the physical properties of

the gas fraction and matrix. The most relevant parameters are

the volume fraction of bubbles, W, the gas pressure P0, the

parameters characterizing the bubble size distribution, as well

as the density, phase velocity, and the real and imaginary parts

of the shear modulus of the matrix. The influence of these

parameters on the acoustic properties of bubbly media has

been discussed in detail by Leroy et al.24

A typical picture of the bubbly sample and a histogram of

measured radii are presented in Fig. 1a and 1b. It was found

that the bubble sizes are well represented by a log-normal

distribution

N Rð Þ~ Ntot
ffiffiffiffiffiffi

2p
p

sLNR
exp {

ln R=R0ð Þð Þ2

2s2
LN

" #

, (9)

where Ntot is the total number of bubbles per unit volume,

R0 = 0.115 mm is the median radius, and sLN = 0.23 is the

logarithmic standard deviation. The total volume fraction, W,

was also determined from the pictures by measuring the

number of bubbles and their radii within the volume Vpicture,

defined by the known dimensions of the frame and depth of

focus in the image:

W~

P

n

4

3
pR3

n

Vpicture

, (10)

For the particular case shown in Fig. 1, W is equal to 0.75%.

All the model parameters except for the shear modulus were

thus determined from our measurements. In the literature,28

the shear modulus for a 2% agar gel is given as m9 # 55 kPa

and m0 # 2.5 kPa for frequencies up to 400 Hz. We also

performed an experiment on a single 400-mm-radius bubble

trapped in agar gel, and measured a Minnaert frequency of

10 kHz, which is consistent with a value of m9 # 55 kPa

[eqn (5)] at this frequency. Thus, the shear modulus appears

to be independent of frequency in this range, enabling us to

use this value for theoretical calculations. Fig. 1 shows a

comparison of the experimental values of attenuation and

phase velocity with theoretical predictions of the model [eqn

(6)], as calculated from the real and imaginary parts of the

wave vector. Note that there are no adjustable parameters in

this theoretical calculation. The agreement between theory and

experiment is very good for attenuation over the entire

frequency range studied, with the theory reproducing the large

and wide peak in attenuation that is observed near and above

the Minnaert frequency. The theory also predicts the trends of

phase velocity at high frequencies quite well, although the

correspondence between experiment and theory deteriorates

below 0.2 MHz, where the velocity is so large that the phase

shift is very small and difficult to measure accurately. We want

to stress that the resonance occurs when the wavelength is

much bigger than R0 (lM = vM/f = 15 mm at 100 kHz for

vM = 1.5 km s21 (see Table 1), while the measured median

radius of the bubbles is about 0.1 mm). Thus, the effective

medium approach implicit in the theoretical model, which is

applicable to the long wavelength regime (lM & R), is expected

to be valid for describing the acoustic resonances of bubbles in

Fig. 1 (a) Sample image; (b) histogram of the bubble size distribution; and frequency dependence of (c) attenuation and (d) phase velocity for

bubbles in a 2% agar gel.

Table 1 Density, longitudinal velocity vl, shear velocity vs and
attenuation for 2% agar gel and PS beads. The density of agar was
determined by weighing a sample of known volume, and the PS density
was measured by creating a neutrally buoyant suspension in a mixture
of light and heavy water. For agar, the longitudinal velocity was
measured in a separate experiment on pure gel, while the shear velocity
is calculated from data in ref. 28. The attenuation in agar was similar
to water and is negligible for these calculations. The values of
longitudinal velocity and attenuation in the PS beads are taken from
the literature,33,34 while the corresponding velocity for shear waves was
found from the best fit of the model to the experimental data

r/g cm23 vl/mm ms21 vs/mm ms21
al/mm21

MHz21
as/mm21

MHz21

Agar 1.01 1.495 0.007 — —
PS beads 1.044 2.35 1.02 0.0066 0.015
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gels, as well as in water. Furthermore, the good agreement

between experiment and theory indicates that eqn (5) gives an

accurate way of extending the acoustic resonance model for

bubbly liquids to viscoelastic media, such as gels, that possess a

shear modulus.

It is also worth emphasizing that the distinct character of the

bubble resonance in a gel is similar to that in water. The

maximum attenuation near resonance occurs at the Minnaert

frequency v0 for a bubble of a given size, but the attenuation

remains large for a range of frequencies above v0 up to the

frequency v1 where the wavelength becomes comparable to the

average spacing between the bubbles. Thus the attenuation

peak becomes wider as the bubble concentration increases,

because for the frequency range v0 , v ,v1 the bubbles

respond in phase opposition to the incident wave, and, as a

result, k2 in eqn (6) becomes negative, giving rise to a regime of

large attenuation. The phase velocity is very small at low

frequencies because the low frequency response is dominated

by the large compressibility of the bubbles,29 but rises sharply

near the Minnaert frequency, reaching its peak value at a

frequency above v0. At its peak, the velocity is much larger

than the velocity of the pure gel, the value that is approached

at high frequencies. Thus, one of the remarkable character-

istics of bubble resonances is the very large range of phase

velocity values that is encountered—a variation of more than

two orders of magnitude for the case considered in Fig. 1.

(b) Gel containing only PS beads (model solid nutrient

inclusions)

Solid inclusions have very different acoustic signatures to

bubbles, as shown by the data in Fig. 2 for agar gel containing

a 2% concentration of PS beads. This figure displays a typical

image of part of the sample, a histogram of the particle size

distribution, and the frequency dependence of the attenuation

and phase velocity. From Fig. 2b, it can be seen that the

particle size distribution of PS beads is very similar to the

bubble size distribution shown in Fig. 1b. However, the lowest

frequency resonance of the polystyrene bead system is

observed at much higher frequencies. Also the magnitude of

the changes in both attenuation and velocity are much less for

the solid particles than for the bubbles, even though the PS

concentration is more than two times greater.

To interpret the velocity and attenuation data, we need a

model that describes the acoustic properties of a randomly

positioned dispersion of solid PS beads embedded in a

homogenous matrix. At high frequencies, where l % R, the

propagation of the sound wave is determined by the individual

properties of each component, depending on which region the

wave is in. At low frequencies, where l & R, the wavelength is

too large to resolve the individual scatterings, and wave

propagation is determined by an average of the properties of

the PS beads and matrix. This behaviour is well described by

the coherent potential approximation (CPA).30 However, the

interesting behaviour seen in Fig. 2 occurs in the intermediate-

frequency regime where l y R; then, the wave is able to

resolve the scatterers and the CPA approximation breaks

down, requiring a different approach. In this intermediate

frequency regime, the behaviour of wave transport in the gel

containing polystyrene beads can be described by an effective

medium model based on the spectral function approach

(SpFA),23,31,32 which allows the ultrasonic spectra to be

related to bead size and concentration.

To describe the essential ideas of the spectral function

approach, we illustrate the method for scalar waves, thereby

avoiding writing down the additional mathematical complexity

in the equations needed to account for the density difference

and shear velocity of the PS beads. (These effects are

nonetheless taken into account in the full calculations, whose

results are shown below.) Since the gel shear velocity is very

small (more than two orders of magnitude less than the

longitudinal velocity, Table 1), its effect on the propagation of

longitudinal waves in the effective medium can be neglected, so

that the SpFA model developed for liquid suspensions can be

Fig. 2 (a) Sample image; (b) histogram of the particle size distribution; (c) and (d) frequency dependence of the attenuation and phase velocity for

2% PS beads in a 2% agar gel. In (b), the solid curve represents a Gaussian distribution that was fitted to the histogram, with R0 and sG being the

mean radius and standard deviation.
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reliably used. For a medium in which the phase velocity varies

with position, the scalar wave equation is

+2z
v2

v2 ~rrð Þ

� �

Y ~rrð Þ~0 , (11)

where Y denotes the wave amplitude, and v ~rrð Þ is the local phase

velocity at position r. This equation can be rewritten by adding

and subtracting the term v2/v2
0 as

+2z
v2

v2
0

{z ~rrð Þ
� �

Y v,~rrð Þ~0 , (12)

where z ~rrð Þ~v2
�

v2
0{v2

�

v2 ~rrð Þ represents the deviation from a

uniform reference medium with phase velocity v0. The Green’s

function for this problem is a solution of the wave equation [eqn

(12)], with delta function excitation, d ~rr{~rr0ð Þ, originating from a

point source at~rr0

+2z
v2

v2
0

{z ~rrð Þ
� �

G v,~rr,~rr0ð Þ~d ~rr{~rr0ð Þ : (13)

In matrix notation, the Green’s function, G, can be written

in the form

G = G0 + G0TG0 (14)

where G0 is the matrix representing the Green’s function for a

homogenous effective medium (z = 0), and T is the exact

scattering operator, including all scattering events among the

spheres, arising from the term z ~rrð Þ in eqn (12). By taking the

ensemble average of eqn (14), we obtain ,G. = G0 + G0,T.G0,

so that all the effects of the scattering are taken into account by the

ensemble-averaged scattering operator. The CPA condition for

eqn (14) is STT = 0, allowing the effective average velocity v0 to be

determined that is consistent with the criterion, G = G0, that on

average there should be no scattering in the effective medium if it is

indeed an equivalent uniform medium. It is this CPA condition

that cannot generally be satisfied in the intermediate frequency

regime, requiring a different approach, such as the SpFA used

here.

To find a solution using the SpFA in the intermediate

frequency range, we further simplify eqn (14) by defining the

self-energy operator, S0, as

,G.21 = G{1
0 2 S0 (15)

The self-energy operator represents all scattering effects

calculated relative to a uniform medium where sound

propagates with velocity v0. In general, it is related to the

scattering operator by S = ,T./(1 + ,T.G0). To leading

order in the number N of the scattering particles per unit

volume, S0 # N,t0. = Nf0(h = 0)/4p, where ,t0. is the

average scattering operator for a single scatterer and f0(0) is

the forward scattering amplitude (scattering angle h = 0). In

the frequency and wave vector representation, the Green’s

function is then given by

SG v,kð ÞT~
v2

v2
0

{k2{S0

� �{1

: (16)

For the purposes of calculation, v0 can be treated as a

dummy variable and thus set to the value v0 = v/k, so that the

Green’s function can be evaluated for any frequency and

wavevector as

G(v, k) = 2S{1
0 (v, k). (17)

The spectral function, which gives the density of states as a

function of frequency and wavevector, is then given by

S(v, k) = 2=m(G) = =m[S{1
0 (v, k)]. (18)

From eqn (18), it can be seen that the frequency and

wavevector dependence of the spectral function can be used

to identify the propagating modes of the system, since they

correspond to modes with the least scattering having the

smallest values of the self energy, and hence are given by peaks

in the spectral function. Thus, by calculating the self-energy

for each (v, k) point and then determining the values of v0 at

the peaks of S(v, k), the dispersion curve can be determined,

and hence the effective medium velocity veff = v0, peak at each

frequency. Furthermore, the attenuation can be determined

from the magnitude of the peaks of the spectral function via

the optical theorem,30 or directly by averaging the square of

the scattering amplitude over all angles, a~4pN

ðp

0

f0 hð Þj j2dh.

These calculations require knowledge of the longitudinal and shear

velocities in the PS beads and the longitudinal velocity in the

matrix, as well as the densities of both media and the volume

fraction of PS beads. The model was also extended to account for

intrinsic attenuation in the PS beads; however, this attenuation is

sufficiently small that it had only a very small effect on the

predicted properties over the frequency range studied, and thus

was not a critical parameter in these calculations. The parameters

used in the calculations for this PS gel system are listed in Table 1,

and were mostly known for our sample from independent

measurements.

Fig. 2c and d show a comparison of the velocity and

attenuation calculated using the SpFA with our experimental

results. These calculations were performed both for mono-

disperse beads with R0 equal to the average value (dashed

curves), and for a Gaussian size distribution obtained from the

image analysis (solid curves). Good agreement between theory

and experiment was obtained in the second case, especially for

the velocity. For the attenuation, the predicted magnitude is

somewhat larger, although the shape of the peak, including its

width, is still accurately predicted. Based on this good agree-

ment, it is reasonable to infer that the bead size distribution

can itself be determined from ultrasonic measurements using

this approach.

c) Gel systems containing PS beads and bubbles

Having established the ultrasonic methods that can be used to

determine the size distribution of both bubbles and solid

particles when dispersed separately in a gel, we next examined

the applicability of the methods to a system containing both

bubbles and PS beads. The sample prepared for this purpose is

shown in Fig. 3a and b, where a typical image and a histogram

of the inclusion sizes are presented. One can see that the size

distribution is much broader than for both previous cases, and

that it is almost impossible to discriminate between bubbles

and beads by image analysis of the picture.

1392 | Soft Matter, 2007, 3, 1388–1394 This journal is � The Royal Society of Chemistry 2007



By contrast, both the attenuation and phase velocity show

clear evidence of two distinct resonance peaks located at

different frequencies (see Fig. 3c and d). Thus, the two types of

scatterer can be clearly resolved in the ultrasonic data even

though their sizes are comparable. To display the high

frequency peak due to the PS beads more visibly, the figures

also contain inserts of the high-frequency region with a

magnified vertical scale, since the changes in phase velocity

and attenuation are much smaller for PS beads than for

bubbles when their concentrations are similar. Note that, even

though the velocity insert shows a decreasing background with

frequency due to the shoulder of the bubble resonance, the PS

resonance is still clearly resolvable for velocity as well as for

attenuation.

To demonstrate that the ultrasonic data can be used to

determine the concentration and size distribution of the

inclusions, theoretical calculations were performed separately

in the low and high frequency regions using the known

acoustic properties of the three constituents. The solid curves

in Fig. 3c and 3d are the best fit of the theories to the

experimental data, with the size distributions and concentra-

tions of the bubbles and beads as the unknown parameters.

Very good overall agreement is shown between these

theoretical predictions and the experimental data in both

frequency ranges. It was found from these fits that the

parameters of the distributions for the PS beads are W = 0.01,

R0 = 0.135 ¡ 0.005 mm, and sG = 0.018 ¡ 0.005, while for the

bubbles W = 0.005, R0 = 0.10 ¡ 0.01 mm, and sLN = 0.22 ¡

0.02, respectively. The curves in Fig. 3b are the size

distributions for both PS beads and bubbles obtained from

the ultrasonic experiments, as well as the combined distribu-

tion. These results are compared with the histogram obtained

using image analysis, shown as the vertical bars. The corres-

pondence is remarkably good. Our ultrasonic determinations

are superior to image analysis in that the bubbles can be

distinguished from the solid inclusions, enabling the concen-

trations and size distribution parameters to be determined.

Another strength of the acoustic method is the possibility of

applying the technique to opaque media, where optical

evaluation of even the total distribution of inclusions is

impossible.

Conclusions

Ultrasonic spectroscopy has been used to demonstrate that

bubbles have a huge effect on the acoustic properties of a

model aerated food system. A broad peak in the attenuation as

a function of frequency was shown to arise due to resonance

effects, and is accompanied by a pronounced variation in the

ultrasonic velocity. This behaviour of the velocity and

attenuation was well described by a model for the resonant

interactions of ultrasonic waves with bubbles in a soft

material. The associated bubble-size-dependent resonance

frequency occurred when the ultrasonic wavelength was much

larger than the size of the bubbles. The scattering of

ultrasound from solid inclusions (polystyrene beads) of similar

size to the bubbles was observed at much higher frequencies

and was successfully modelled with an effective medium model

based on a spectral function approach. Thus, both experiment

and theory demonstrated that the ultrasonic signatures of

bubbles and solid inclusions can be distinguished, even when

the inclusions are of comparable sizes.

In this paper, we have exploited the acoustic resonances of

the inclusions to demonstrate the feasibility of directly

monitoring their size distributions. While the current experi-

ments have been performed on samples with relatively low

concentrations (up to 2%) and large sizes (y100 mm) of

inclusions, there is nothing in principle that should preclude

extending the approach to the much higher concentrations or

smaller particle sizes often found in soft materials. At high

Fig. 3 Data for a sample containing both 1% PS beads and 0.5% bubbles in agar gel: (a) sample image, (b) histogram of the size distribution

measured by image analysis (vertical bars) and by ultrasonic spectroscopy (curves), (c) and (d) frequency dependence of the ultrasonic attenuation

and phase velocity.
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concentrations, for example, our SpFA model has been

applied successfully to interpret experimental data on suspen-

sions of glass beads at volume fractions up to 63%, where this

effective medium approach provides remarkably accurate

results.23,35,36 While high attenuation can limit the range of

concentrations and sizes of inclusions that can be investigated

in transmission experiments, reflection techniques based on

acoustic impedance differences do not suffer from this

limitation; they should allow inclusion sizes to be studied

down to the low micron range by tuning the ultrasonic

frequency to match the resonance condition.

The resonance spectroscopy methods demonstrated in this

paper complement the well established particle sizing approach

based on the work of Epstein and Carhart37 and Allegra and

Hawley;38 their theoretical models for the frequency depen-

dence of the ultrasonic attenuation in the long wavelength

regime (l & R0) have been extensively used as the basis for

measuring the particle size distribution and concentration in

colloids and dispersed systems. Because of the sharp spectral

features of resonances, our approach may be especially useful

for precise particle and bubble sizing in heterogeneous

materials such as foods, where the sizes of the inclusions are

often large enough to be easily accessible by resonance

spectroscopy.

Our results on this model system may be viewed as an

important step towards the use of ultrasonic resonance

techniques to characterize real functional foods containing

bubbles and solid nutrient inclusions. Because both solid and

gas inclusions can be detected simultaneously, even when they

have comparable sizes, ultrasound has considerable potential

as a non-invasive technique for evaluating quality impairment

arising from bubble-nutrient interactions during the manufac-

ture of high quality functional foods. This will enable

nutritional benefits to be maximized while maintaining good

control over food microstructures, thereby helping to ensure

consumer acceptability.
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